Code No: 114CU JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2016 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Common to ECE, ETM)

Time: 3 Hours

1.a)

Max. Marks: 75

(25 Marks)

R13

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

How can materials be classified in terms of their conductivity? [2]

- b) Give an expression for convection current density. Also state the point form of Ohm's Law. [3]
- c) State Maxwell's equations for a lossless or non conducting medium. [2]
- d) State the Amphere's Force Law. Give magnetic force for arbitary geometrics. [3]
- e) Give an expression for intrinsic impedance in phasor form. What are its magnitude and phase components? [2]
- f) Explain in brief significance of loss tangent.
- g) List any four types of transmission lines.
- h) How does group velocity vary when compared to phase velocity?
- i) What are the two families of circles that constitute the Smith Chart? [2]
- j) What are the advantages and disadvantages of a Single Stub?

PART - B

(50 Marks)

- 2.a) State Coulomb's Law. Find the force on charge Q_1 , 30 µc due to a change Q_2 , -200 µc, where Q_1 is at (0,0,2) m and Q_2 is at (2,1,0) m.
 - b) Derive the relation between electric field, E and Scalar potential, V. Find the electric field at (2,3,1) if the potential distribution is of the form $3x^2y+y^2x+3z$.

[5+5]

[3]

[2]

[3]

[3]

OR

- 3.a) Discuss the Maxwell's equations for electrostatic fields.
 - b) Obtain the expression of Gauss's Law for infinite surface charge. Also state any two limitations of Gauss's Law. [5+5]
- 4.a) State the important properties of magnetic lines of forces.
 - b) Show that the magnetic field due to a finite current element along z-axis at a point P "r" distance away from y-axis is given by $\overline{H} = \frac{1}{4\pi r} (\sin \alpha_1 \sin \alpha_2) a\phi$, where

"I" is the current through the conductor, α_1, α_2 are the angles made by the tips of the conductor element at P. [5+5]

OR

- 5.a) What are boundary conditions? State the boundary conditions at the interface of dielectric and perfect conductor.
 - b) A certain material has $\sigma = 0$ and $\epsilon_r = 1$, if $\overline{H} = 4\sin(10^6 t 0.01z)\overline{a_y}A/m$. Use Maxwell's equations to find μ_r . [5+5]
- 6.a) Derive the relation between E and H in a Uniform plane wave.
- b) What are the wave equations for a lossless medium and a conducting medium for sinusoidal variations? [5+5]

OR

- 7.a) Write short notes on normal incidence of a plane wave on a perfect dielectric.
 - b) A plane wave travelling in air is normally incident on a material with $\epsilon_r = 4$ and

 $\mu_r = 1$. Find the reflection and transmission coefficients. [5+5]

- 8.a) Derive the expression for voltage and current at any point on the transmission line in terms of characteristics impedance.
 - b) Discuss the parameters that characterize a lossless and lowloss transmission line. [5+5]

OR

- 9.a) What is distortion? State the conditions that characterize a distortion less line.
- b) The propagation constant of a lossy transmission line is $(1+j2)m^{-1}$ and its characteristic impedance is 20 Ω at w = 1M rad/s. Find L ,C, R and G for the line. [5+5]
- 10.a) What are the applications of transmission lines?
 - b) How can ultra high frequency transmission lines be used as circuit Elements?

[5+5]

OR

- 11.a) What are the applications of Smit Chart.
 - b) One end of a lossless transmission line having the characteristic impedance of 75 Ω and length of 1 cm is short circuited. At 3 GHz, What is the input impedance at the other end of the transmission line? [5+5]

--00000--

www.ManaResults.co.in

Code No: 124CU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2017 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Common to ECE, ETM)

Time: 3 Hours

Max. Marks: 75

()E Manlea)

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Warks)
1.a)	Find Electric field intensity due to the charge distribution ρ_v .	[2]
b)	Write poisson's and Laplace equations.	[3]
c)	State Biot-Savart's law.	[2]
d)	Calculate the self inductance per unit length of an infinitely long soler	noid. [3]
e)	Write a wave equation in a lossy, charge free medium based or	n Maxwell's
	Equation.	[2]
f)	What is Brewster angle? Write its equation.	[3]
g)	What is condition for distortion less transmission line?	[2]
h)	Explain how Quarter wave transformer is used for matching?	[3]
i)	What is the value of characteristic impedance and reflection coefficient	cient for an
	open circuited line?	[2]
j)	What are the characteristics of smith chart?	[3]

PART-B

(50 Marks)

- 2.a) Point charges 5nC and -2nC are located at (2,0,4) and (=3,0,5), respectively. Find the electric field at (1,-3,7).
 - b) Given that $E=(3x^2+y_0a_x+xa_y) kV/m$, find the work done in moving a $-2\mu C$ charge from (0,5,0) to (2,-1,0) by taking the path. [5+5]
- 3.a) An electric dipole of $100a_zpC.m$ is located at the origin. Find V and E at point $(1,\pi/3,\pi/2)$.
- b) Three point charges -1nC, 4nC, and 3nC are located at (0,0,0),(0,0,1) and (1,0,0) respectively. Find the energy in the system. [5+5]
- 4.a) A circular loop located on $x^2+y^2=9$, z=0 carries a direct current of 10A along a_{ϕ} . Determine H at (0,0,4) and (0,0,-4).
 - b) In a certain conducting region, $H=yz(x^2+y^2)a_x-y^2xza_y+4x^2y^2a_zmA/m$. Determine J at (5,2,-3). [5+5]

OR

- 5.a) State Maxwell's equations in an integral and word form.
 - b) A unit normal vector from region 2 (μ =2 μ_0) to region 1 (μ = μ_0) is a_{n21} =($6a_x$ +2 a_y -3az)/7. If H_1 =10 a_x + a_y +12 a_z A/m and H_2 = $H_{2x}a_x$ -5 a_y +4 a_z A/m. Determine H_{2x} . [5+5]

www.ManaResults.co.in

- 6.a) A lossy material has $\mu=5\mu0$, $\epsilon=\epsilon_0$. If at 5 MHz, the phase constant is 10 rad/m, calculate the loss tangent, conductivity of the material, complex permittivity attenuation constant and intrinsic impedance.
 - b) Derive the equation for intrinsic impedance in lossless dielectrics. [5+5] OR
- 7.a) Determine the Fresnel coefficients for oblique incidence from lossless medium 1 to lossless medium 2 for parallel polarization.
 - b) Region 1 is a lossless medium for which $y \ge 0$, $\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, whereas region 2 is free space, $y \le 0$. If a plane wave E=5cos $(108t+\beta t)a_z V/m$ exists in region1, find the time average pointing vector. [5+5]
- 8.a) A transmission line operating at 500MHz has $Z_0=80\Omega$, Propagation constant = 0.04 Np/m, $\beta=1.5$ rad/m. Find the line parameters R, L, G and C?
 - b) Find the Z_{in} at any point on the line in terms load impedance starting from voltage and current wave equations on line. [5+5]

OR

- 9.a) For a lossless two wire transmission line show that the Characteristic impedance $Z_0 = \frac{120}{\sqrt{\epsilon_r}} \cosh^{-1} \frac{d}{2a}$.
 - b) A lossless transmission line operating at 4.5GHz has L= 2.4μ H/m and Z₀= 85Ω . Calculate the phase constant and the phase velocity. [5+5]
- 10.a) A 500 Ω lossless line has $V_L = 10e^{j25^0}$ V and $Z_L = 50e^{j30^0}\Omega$. Find the current at $\lambda/4$ from the load?
 - b) A 60 Ω air line operating at 20MHz is 10m long. If the input impedance is 90 +j150 Ω . Calculate Z_L, Γ and S. [5+5]

OR

11. Explain how double stub is used for matching with suitable diagram? Derive equations for its length and location. [10]

----00000----

Code No: 114CU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, October/November - 2016 **ELECTROMAGNETIC THEORY AND TRANSMISSION LINES** (Common to ECE, ETM)

Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

State Divergence theorem and Stokes theorem. [2] 1.a) Mention the differences between scalar and vector magnetic potentials. [3] b) If the flux flowing through closed surface is 3nc. What is the total charge c) enclosed by that surface? [2] Find the input impedance of a section of a 50Ω lossless transmission line that of d) length 0.1 λ long and is terminated in a short circuit. [3] Define reflection coefficient and VSWR. [2] e) Derive expression for electrostatic energy of a capacitor. [3] f) State Maxwell's four laws in derivative form. [2] **g**) Find skin depth at 1GHz for copper having conductivity 5.7×10^7 mho/m. [3] h) What is stub matching? Draw typical stub matching transmission line. i) [2] List the applications of smith chart. i) [3]

PART - B

Derive Poisson's and Laplace's equations from fundamentals. List few of its 2.a) applications concerned to electrostatic fields.

An infinitely long uniform line charge is located at y = 3, z = 5. If $\rho_1 = 30nc / m$, b) find field \vec{E} intensity at (i) origin (ii) P(5,6,1) [5+5]

OR Develop an expression for potential due to dipoles.

3.a) Evaluate the electric field intensity at a point P (-5, 7, -4) in free space due to a **b**) charge of 0.2 mille coulombs placed at point R (2,-1,-2). [5+5]

Distinguish between conduction and convection currents. 4.a)

- Find the polarization 'P' in a dielectric material with $\varepsilon_r = 2.8$ b) if D=3.0×10⁻⁷ \hat{a}_n c/m²
- c) Derive the boundary conditions at the interface between (i) Dielectric-Dielectric (ii) Dielectric-conductor [3+3+4]OR
- Derive Maxwell's equations in integral form. Based on this obtain the 5.a) corresponding differential equation by applying Stroke's theorem.
 - b) Compare boundary conditions in Electrostatics and Magnetostatics. [5+5]

www.ManaResults.co.in

(25 Marks)

Max. Marks: 75

(50 Marks)

- 6.a) Evaluate the reflection and transmission coefficients for the case of an electromagnetic wave in air incident normally upon the copper sheet at frequency of 1 MHz. Given $\mu_{1} = \mu = \mu$, $\varepsilon_{1} = \varepsilon_{2} = \varepsilon_{0}$, $\sigma_{1} = 0$, $\sigma_{2} = 5.8 \times 10^{7}$ v/m.
 - b) Find the energy stored in a standing wave incident normally on a perfect conductor over a distance $-\lambda/4$ to 0 per unit in x, y coordinates. [5+5]

OR

- 7.a) State and prove Poynting theorem.
- b) Derive the equation in conducting medium. Discuss skin effect and find the skin depth at 1 GHz for copper having conductivity 5.7×10^7 mho/m. [5+5]
- 8.a) Discuss in brief about inductance loading of telephone cables.
 - b) A lossless transmission line of length 0.434 lambda and characteristic impedance 100Ω is terminated in an impedance $260 + j \, 180 \Omega$. Find
 - (i) Voltage reflection co-efficient
 - (ii) Standing wave ratio
 - (iii) Input Impedance

[5+5]

OR

- 9.a) The attenuation constant on a 50 ohm distortionless transmission line is 0.01 dB/m. The line has a capacitance of 0.1 nF/m. Find the resistance, inductance and conductance per meter of the line.
 - b) A loss less of 100 ohms is terminated by a load which produces SWR = 3. The first maximum is found to be occurring at 320 cm. If f = 300 MHz determine the load matching. [5+5]
- 10.a) Write a short notes on reflection losses on unmatched transmission line.
 - b) The input impedance of as short-circuited lossy transmission line of length 2m and characteristic impedance 75Ω is $45 + j 225 \Omega$.
 - (i) Find α and β of the line.
 - (ii) Determine the input impedance if the short-circuit is replaced by a $Z_L=67.5 j4.5 \Omega$ [5+5]

OR

- 11.a) Explain the basis for construction of Smith chart. Illustrate as to how it can be used of an Admittance chart.
 - b) A line having Z_0 of 100 ohms is terminated into a load of 50-j50 ohms. It is desired to provide matching between the time and the load by means of a short circuit street. Determine the length of the stun if signal frequency is 10 MHz..

[5+5]

--00000--

www.ManaResults.co.in

·	AWAHAREAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year II Semester Examinations, May-2013 Electromagnetic Theory and Transmission Lines	Qé
m:	(Common to ECE, ETM)	
06	Answer any five questions All questions carry equal marks	Ge
1.a)	A cube of 2 cm. side is centered at the origin, with its sides parallel to the axes, and contains a field of $3x^2$ U V/m. Find the tatal	
b)::	contained in the cube, and the flux coming out of one face of the cube. Find the potential and sketch its variation with radial distance, for a spherical shell of radius $a = 3 \text{ cm}$, having a surface charge density of $\rho_{\rm S} \text{ C/m}^2$. [15]	QĒ
2.a)	Distinguish between the Conduction and Convection currents. Establish the current continuity equation, and hence, calculate the relaxation time for Brass material housing a contract of the relaxation time for	
b)	Brass material, having a conductivity of 1.1×10^7 mhos/mi at 10 MHz. For Find the capacitance of a 50 cm. long coaxial cable, having conductors of 4 cm and 2 cm diameters, separated by a medium of relative permittivity 2.56. Also find the stored energy and field at a radius of 1.5 cm in the dielectric when 10 V is applied. [15]	0e
3.a).*	Define Ampère's Circuital Law in point sand integral forms for static fields. Establish the fields in the different regions of a coaxial cable carrying a current I, and sketch their variation with radial distance. Is this cable a	
(`` 4:a)	Define and derive the Maxwell's curl equation involving Faraday's Law.	Ŋ.,
b)	If $H = 10 \cos(10^8 t - z) \hat{Y}$ mA/m, find the corresponding electric field in air, and the displacement current density. [15]	
5ia) b)	Define al Uniform Plane Wave and establish the wave equations for a conducting medium.	0ë
	A lossy dielectric has intrinsic impedance of 250 $\angle 30^{\circ}$ ohms, and $\overline{E} = 2 \ e^{-\alpha x} \cos(\omega t - 0.5 \ x) \ \hat{Z} \ V/m$. Find the loss tangent, propagation constant, skin depth, polarization and direction of propagation. [15]	
6 a):-	With neat sketches, define and distinguish between vertical and honzontal polarizations, when a uniform plane wave is obliquely incident on a perfect dielectric from air, with relevant schematics.	Qé
b)	A Uniform plane wave is normally incident from free space or onto a non- magnetic medium of $\epsilon_r = 2.56$, $\sigma = 0$. Determine the reflection and transmission coefficients for E and H fields, and find the VSWR. [15].	
	ualishission coefficients for E and H fields, and find the VSWR. [15].	1449. 1895

** * FEA

Ś

Ë.

Ë,

Ġ.

10.00

it

		27		** * ***	** * · ···	1414 (Av.	17. T. Ava	
ė	7.a) [account for the different types of distortions present in such lines, and these distortions be avoided? b) A 50 ohm transmission line operates at 10 MHz, with a velocity of 2 x 10⁸ m/sec. If the load impedance is 60 + j 10 ohms, determine its input impedance for a line length of 10 m and 5 m. 						
÷0	8ia). b)	Establish the revariation with A 60 ohm loss $75 + j 50$ ohms and Z_{MIN} , if the	ŪĞ					
é	ЩÉ.	0.6 (317)	WORLD Herabad	<u>الله</u> 00000	06	. [15] 回告	DË,	
É.	ŪĘ.	12	world.		06	Q6	Qé	
÷		QG		QĞ	QĞ	Q6		
	QG	DG	Q6	06	Qé	06		
	Ūf	QG		06	06		06	
ė	Q6	O6	Qe.	Q6	06	Q6	Qé	
	06	<u>C</u> é		Né	QG	06	QG	
	•							